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Conversion Factors

Inch/Pound to International System of Units

Multiply By To obtain
Length
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
Area
acre 4,047 square meter (m)
acre 0.4047 hectare (ha)
square mile (mi?) 2.590 square kilometer (km?)
Volume
acre-foot (acre-ft) 1,233 cubic meter (m?)
acre-foot (acre-ft) 0.001233 cubic hectometer (hm?)
million acre-foot (million acre-ft) 1,233.48 million cubic meter (million m3)
Flow rate
acre-foot per year (acre-ft/yr) 1,233 cubic meter per year (m3/yr)
acre-foot per year (acre-ft/yr) 0.001233 cubic hectometer per year (hm?/yr)
cubic foot per day (ft*/d) 0.02832 cubic meter per day (m3/d)
inch per year (in/yr) 25.4 millimeter per year (mm/yr)
Hydraulic conductivity
foot per day (ft/d) 0.3048 meter per day (m/d)
Transmissivity and Conductance
square foot per day (ft*/d) 0.09290 square meter per day (m*d)

International System of Units to Inch/Pound

Multiply By To obtain

Length

kilometer (km) 0.6214 mile (mi)

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:
°C=(°F-32)/1.8.

Datums

Vertical coordinate information is referenced to the North American Vertical Datum of 1988
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Altitude, as used in this report, refers to distance above the vertical datum.
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CBP Columbia Basin Project
CRBG Columbia River Basalt Group
DEM Digital Elevation Model
Ecology Washington State Department of Ecology
GHB General Head Boundary package of MODFLOW
GIS geographic information system
GWMA Columbia Basin Ground Water Management Area
HFB Horizontal Flow Barrier
MODFLOW USGS modular three-dimensional finite-difference groundwater-flow model
NWT Newton Solver package of MODFLOW
NWIS National Water Information System
PEST parameter estimation program
QDEP Quaternary deposits
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RASA
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RING

RMSE

SFR

SOWAT model
USGS

Quincy Groundwater Management Subarea
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Ringold Formation

root-mean-square error

Stream Flow Routing package of MODFLOW

SOil WATer balance model

U.S. Geological Survey
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Well-Numbering System

In Washington, wells are assigned numbers that identify their location in a township, range,
section, and 40-acre tract. For example, well number 19N/23E-34R01 indicates that the well is

in township 19 north of the Willamette Base Line, and range 23 east of the Willamette Meridian.
The numbers immediately following the hyphen indicate the section (34) in the township, and
the letter following the section (R) gives the 40-acre tract of the section. The two-digit sequence
number (01) following the letter indicates that the well was the first one inventoried in that 40-
acre tract.

WASHINGTON

Willamette Meridian

Willamette Base Line

654|321
D/C|B|A
T 7 12
E|F|G|H
18 13 19N/23E-34R01
19 M| L|KI|J
19 21| 5
N|P|al|®’R
N. | 30 25
SECTION 34
31|32 33| 34| 35436
R. 23 E.

Well numbering system in Washington.



Simulation of Groundwater Storage Changes in the

Quincy Basin, Washington

By Lonna M. Frans, Sue C. Kahle, Alison E. Tecca, and Theresa D. Olsen

Abstract

The Miocene Columbia River Basalt Group and younger
sedimentary deposits of lacustrine, fluvial, eolian, and
cataclysmic-flood origins compose the aquifer system of the
Quincy Basin in eastern Washington. Irrigation return flow and
canal leakage from the Columbia Basin Project have caused
groundwater levels to rise substantially in some areas. Water
resource managers are considering extraction of additional
stored groundwater to supply increasing demand. To help
address these concerns, the transient groundwater model of
the Quincy Basin documented in this report was developed to
quantify the changes in groundwater flow and storage.

The model based on the U.S. Geological Survey
modular three-dimensional finite-difference numerical code
MODFLOW uses a 1-kilometer finite-difference grid and is
constrained by logs from 698 wells in the study area. Five
model layers represent two sedimentary hydrogeologic units
and underlying basalt formations. Head-dependent flux
boundaries represent the Columbia River and other streams,
lakes and reservoirs, underflow to and (or) from adjacent
areas, and discharge to agricultural drains and springs.
Specified flux boundaries represent recharge from precipitation
and anthropogenic sources, including irrigation return flow
and leakage from water-distribution canals and discharge
through groundwater withdrawal wells. Transient conditions
were simulated from 1920 to 2013 using annual stress periods.
The model was calibrated with the parameter-estimation
code PEST to a total of 4,064 water levels measured in 710
wells. Increased recharge since predevelopment resulted in
an 11.5 million acre-feet increase in storage in the Quincy
Groundwater Management Subarea of the Quincy Basin.

Four groundwater-management scenarios were
formulated with input from project stakeholders and were
simulated using the calibrated model to provide representative
examples of how the model could be used to evaluate the
effect on groundwater levels as a result of potential changes
in recharge, groundwater withdrawals, or increased flow in
Crab Creek. Decreased recharge and increased groundwater
withdrawals both resulted in declines in groundwater levels

over 2013 conditions, whereas increasing the flow in Crab
Creek resulted in increased groundwater levels over 2013
conditions.

Introduction

Since 1952, water diverted from the Columbia River
has been used to irrigate parts of the Bureau of Reclamation
(Reclamation) Columbia Basin Irrigation Project (CBP)
in eastern Washington. As a result of the large volumes of
surface-water irrigation, groundwater levels in the Quincy
Groundwater Management Subarea (Quincy Subarea)
sediments and upper basalt generally have risen and caused
various problems, such as septic system failures and loss
of agricultural lands because of ponding. As demands for
water use increase, State and local water resource managers
are increasingly looking to the additional groundwater in
storage as a potential source of water for development. The
development of these groundwater resources not only could
provide additional water for claim, but also could potentially
mitigate some of the adverse consequences of the increased
water levels.

Under Washington State law, subject to existing
rights, all natural groundwater and all “artificially stored”
groundwater that has been abandoned or forfeited are available
for appropriation (Washington State Legislature, 2003;
Washington Administrative Code [WAC] 508-14-030). The
units in the Quincy Subarea situated between ground surface
and the top of the uppermost basalt flow, known as the Quincy
unconsolidated zone, have large quantities of groundwater in
“artificial” storage. That storage extends into the uppermost
basalt flows. Thus, artificially stored groundwater in the
Quincy Subarea is believed to be present in the shallow
management unit, which is defined in a rule to mean that the
groundwater is hydraulically continuous between land surface
and a depth of 200 ft into the Quincy basalt zone and includes
all of the Quincy unconsolidated zone. (Washington State
Legislature, 1988; WAC 173-124).
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Purpose and Scope

The USGS, in cooperation with Reclamation and
the Washington State Department of Ecology (Ecology)
conducted this study to quantify natural and artificially stored
groundwater in the Quincy Subarea. This report (1) describes
the hydrogeologic setting and hydrogeologic units of the study
area, (2) documents the groundwater-flow model that was
developed to quantify the changes of groundwater storage
within the Quincy Subarea, (3) evaluates the applicability
and accuracy of the model as a predictive tool for assessing
changes in groundwater storage, and (4) discusses limitations
of the model.

The four primary objectives of this study are to:

1. Define the hydrogeology of the study area,

2. Determine groundwater flow directions and flows
through the aquifer system,

3. Quantify the effect of anthropogenic recharge and
groundwater withdrawals on storage in the groundwater
system, and

4. Simulate the effects of four groundwater-management
scenarios.

Description of Study Area

The Quincy Subarea, described in WAC 173-124-040
(Washington State Legislature, 1988), encompasses 1,100
miZ in Grant County and a small part of Adams County,
Washington (fig. 1). The Quincy Subarea is located within the
structural and topographic Quincy Basin, which is bounded on
the north by the Beezley Hills, on the south by the Frenchman
Hills, on the west by Evergreen and Babcock Ridges, and on
the east by the high land east of Moses Lake (Schwennesen
and Meinzer, 1918). Altitudes in the study area range from 570
ft to about 2,500 ft west of Ephrata, with an average altitude
of about 1,200 ft. The climate is arid to semi-arid, with mean
annual precipitation ranging from 7 to 10 in. and occurring
primarily during the winter. Average daily temperatures range
from the upper 20s °F in December and January to more than
90 °F in July and August.

The Quincy Basin is drained by Crab Creek. The creek
flows westward into the basin and then southeasterly toward
Moses Lake. Since the beginning of irrigation in 1952 (Tanaka
and others, 1974), perennial flow in Lower Crab Creek is
supported by overflow from Potholes Reservoir and discharge
from wasteways that primarily are return flows from irrigation.

The 2010 population of the study area was more than
68,000 (Washington State Office of Financial Management,
2017). The largest city in the study area is Moses Lake, with

a population of 20,366, followed by Ephrata (7,664) and
Quincy (6,750). The dominant land use/land cover in the
study area in 2006 (fig. 2) was planted/cultivated crops (49
percent), followed by shrubland (37 percent) and developed
areas (3 percent) (Fry and others, 2011). Use of groundwater
resources in the Quincy Basin began in the late 1800s, when
groundwater was withdrawn for agriculture, stock watering,
and domestic use. In the 1950s, the CBP began to deliver
water diverted from the Columbia River at Grand Coulee Dam
for large-scale agricultural development (Vaccaro and others,
2015). Subsequently, groundwater levels generally have risen
in the shallow basin-fill sediments.

Although groundwater withdrawals have increased since
the 1950s, surface-water irrigation systems supply most of the
agricultural water demand in the study area. Water diverted
from the Columbia River is distributed by the CBP through a
system of canals and pipes, or buried drains (fig. 3). Irrigation
water that is not transpired by crops, evaporated, or discharged
to the Columbia River through drains and wasteways
recharges the groundwater system.

Previous Investigations

Numerous previous investigations have contributed to
the understanding of the hydrogeologic conditions and water
resources in or near the Quincy Basin. These studies are
discussed here, and the locations of these studies are shown
in figure 4. A brief summary of each investigation is provided
herein, and the reader is referred to the individual documents
for more detailed information provided by the respective
investigation.

Early studies of the Quincy Basin focused on generic
hydrogeologic unit descriptions and quantifying the available
groundwater in the underlying aquifers. One of the earliest
published descriptions of the Quincy Basin was completed
by Schwennesen and Meinzer (1918) (fig. 4). Based on
direct field observations and about 250 groundwater-level
measurements, the report detailed various features of the basin
including geology, topography, climate, soils, and stream
discharge, as well as the feasibility of pumping groundwater
for irrigation. Taylor (1948) followed with descriptions of
the water-bearing properties of the formations underlying
the Quincy Basin, the availability of groundwater in these
formations, and the overall changes in the groundwater
elevations from 1916 to 1941. Mundorff and others (1952)
supplemented the earlier work of Taylor by describing the
geology, geologic structure and influence on groundwater,
groundwater occurrence and conditions (recharge, discharge,
quality, and availability), and a water-level network
established in 1940 and expanded with an additional 100 wells
during 1949-50.
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The establishment of the Columbia Basin Irrigation
Project in the mid-20th century renewed interest in the
Quincy Basin and the effects of irrigation on local aquifers.

A two-volume report compiled by Walters and Grolier (1960)
was among the first to document the effects of increased
irrigation on groundwater levels by using hydrographs to
predict areas of marked water-level rise. Tanaka and others
(1974) (fig. 4) produced some of the first digital computer
models of groundwater inflow and outflow in the Columbia
Basin Irrigation Project area, including a model specific to the
Quincy Basin. The analyses were divided into two parts: (1) a
steady-state model analyzing conditions before 1952 (pre-
irrigation), and (2) a transient model analyzing conditions after
1952 (post-irrigation). Results from these analyses outlined
the differences in cumulated water storage amounts from the
pre-irrigation to the post-irrigation era.

A series of reports were published in the 1980s and 1990s
for the USGS Regional Aquifer-System Analysis (RASA)
program for the Columbia Plateau area. Drost and Whiteman
(1986) and Drost and others (1990, 1993) characterized the
surficial geology, structure, top altitudes and thicknesses of
hydrogeologic units, groundwater levels and groundwater
quality, and various components of groundwater recharge and
discharge for the Columbia Plateau Aquifer System RASA.
Bauer and Vaccaro (1990) developed a deep-percolation
model using precipitation, temperature, streamflow, soils,
land-use, and altitude data to quantify groundwater recharge to
this aquifer system for predevelopment and postdevelopment
(1956-77) land-use conditions. Whiteman and others (1994)
published a paper assessing several components including the
hydrogeologic framework of the Columbia Plateau Aquifer
System, the area water budget, regional groundwater flow
patterns, and the general geochemistry of the aquifer system.

Lindsey and others (2007) described the geologic
framework of the sedimentary aquifer system in the Columbia
Basin Ground Water Management Area (GWMA) of Adams,
Franklin, and Grant Counties (fig. 4). Several years later,

a computer groundwater-flow model of the GWMA was
completed by Porcello and others (2010).

Recent studies of the hydrogeologic framework, water
budget, groundwater conditions, and post-development
trends in the Columbia Plateau Regional Aquifer System
encompass the current study area and focus on the basalt
aquifers (Snyder and Haynes, 2010; Kahle and others,

2011; Burns and others, 2012; Vaccaro and others, 2015)

(fig. 4). These studies provided important data used for the
construction of a three-dimensional numerical model of
groundwater flow in the Columbia Plateau Regional Aquifer
System (Ely and others, 2014) (fig. 4). This model was used to
evaluate groundwater availability as a result of the combined

Introduction 7

effects of irrigation-enhanced recharge, natural recharge
by precipitation, groundwater withdrawal by pumping, and
naturally occurring discharge in the form of streamflow and
evapotranspiration.

Most recently, Heywood and others (2016) developed
a model for groundwater storage changes in the 508-14
Management Area in the eastern Pasco Basin (fig. 4), just
south of the Quincy Basin. The report describes groundwater
flow directions and fluxes in the underlying aquifer system
and quantifies the effect of anthropogenic inflow and outflow
on storage in the system. A large component of the report also
is dedicated to the simulation of four different hypothetical
pumping scenarios in the 508-14 Management Area in an
effort to quantify potential groundwater-level drawdown
attributable to an increased demand for withdrawal.

Methods of Investigation

Data compilation and review for the purpose of
refining the hydrogeologic framework in the Quincy Basin
involved obtaining well driller’s logs for lithologic and
hydrologic information, analysis of water-level records,
and the construction of hydrogeologic cross sections and
hydrogeologic unit maps.

Well Data

Construction, lithologic log, and water-level data from
698 wells in the project area were compiled from 390 sites
retrieved from the USGS National Water Information System
(NWIS) database and 308 wells from the Ecology well-
log database (Washington State Department of Ecology,
2016). The three criteria for selecting wells from the NWIS
database were: (1) sites were located in the study area and
were previously visited by USGS personnel, (2) complete
construction information and well logs were available, and (3)
multiple water-level measurements were available.

The 308 additional wells compiled from the Ecology
well-log database were used in areas where NWIS well data
were not available using the three well-selection criteria.
These wells were not field-located and were assigned
approximate latitude and longitude coordinates using the
public land survey locations (township, range, section, and
quarter-quarter section), well addresses, and (or) parcel
numbers available on the drillers’ logs for each well. Online
maps provided by the Grant County Assessor and Adams
County Assessor were used to verify drillers’ locations and
tax parcel numbers and to estimate latitudes and longitudes.
Selected physical and hydrologic data for the project wells are
provided in table 5 (at back of report).
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Hydrogeology

The surficial geology of the study area (fig. 5) was
simplified by combining similar units from the digital geologic
map database of Washington (Washington Division of
Geology and Earth Resources, 2005). A map of the surficial
hydrogeology of the study area was made by grouping
surficial geologic units of similar lithology and extent into
hydrogeologic units, refined further by using lithologic
information from drillers’ logs of project wells (fig. 6). A
digital tabulation of borehole hydrogeologic unit assignments
facilitated creation of seven hydrogeologic cross sections.
Two representative sections are included in this report (fig. 7).
Top and extent-of-unit maps of each hydrogeologic unit were
manually drawn using information from the hydrogeologic
units and the well data.

Raster representations of the top altitudes (surfaces) and
extents of the hydrogeologic units described in this report
were generated in a geographic information system (GIS)
using a grid with square cells 100 ft on a side. These surfaces
were used to construct the digital hydrogeologic framework
for the USGS modular three-dimensional finite-difference
groundwater-flow model (MODFLOW; U.S. Geological
Survey, 2018). Unit-top altitudes at project wells were
interpolated through the extent of the hydrogeologic units
using the Australian National University Digital Elevation
Model (ANUDEM) procedure (Hutchinson, 1989). Each
hydrogeologic unit surface was constrained where the
unit outcropped by the National Elevation Dataset Digital
Elevation Model (DEM; U.S. Geological Survey, 2017).

The interpolated hydrogeologic unit surfaces and
thicknesses were compared to previous hydrogeologic-
unit maps and well interpretations to honor previous data
interpretations wherever feasible. Hydrogeologic-framework
uncertainties are greatest in areas where the surficial geology
changes abruptly, or the project wells do not provide sufficient
subsurface lithologic data. These interpolated hydrogeologic
unit surfaces were used along with the borehole hydrogeologic
unit assignments to create final cross section profiles using the
GIS extension CrossView (https://crossviewgis.com/) (fig. 7).

Horizontal Hydraulic Conductivity

Hydraulic conductivity is a measure of the ability of a
material to transmit water. Horizontal hydraulic conductivity
was estimated for the hydrogeologic units using the
drawdown/discharge relation reported on drillers’ logs that
reported pump testing wells for 1-120 h. Only data from those
wells with a driller’s log containing discharge rate, duration of
pumping, drawdown, static water level, well-construction data,
and lithologic log were used.

The modified Theis equation (Ferris and others, 1962)
was first used to estimate transmissivity (7) of the pumped
interval. To determine transmissivity, the base Theis equation
is rearranged and solved for 7. Transmissivity is the product

of horizontal hydraulic conductivity and thickness of the
hydrogeologic unit supplying water to the well.
The modified equation is

_ (0] 1n2.25Tl‘
4nT r2S

s (M
where
is drawdown in the well, in feet;
(0] is discharge, or pumping rate, of the well, in
cubic feet per day;
T  is transmissivity of the hydrogeologic unit, in
square feet per day;
t  islength of time the well was pumped, in
days;
r is radius of the well, in feet; and
S is storage coefficient, a dimensionless
number, assumed to be 0.001 for confined
units and 0.1 for unconfined units.

[N

Assumptions for using equation 1 are that aquifers are
homogeneous, isotropic, and infinite in extent; wells are
fully penetrating; flow to the well is horizontal; and water
is released from storage instantaneously. Additionally, for
unconfined aquifers, drawdown is assumed to be small in
relation to the saturated thickness of the aquifer. Although
many of the assumptions are not precisely met, the field
conditions in the study area approximate most of the
assumptions and the calculated hydraulic conductivities are
reasonable estimates for the defined hydrogeologic units.

Equation 1 was solved for transmissivity (7) using
Newton’s iterative method (Carnahan and others, 1969).
The calculated transmissivity values were not sensitive to
assumed storage coefficient values; the difference in computed
transmissivity between using 0.1 and 0.001 for the storage
coefficient varies by a factor of 2. The following equation was
used to calculate horizontal hydraulic conductivity from the
calculated transmissivity:

K, = (2

r
b
where
Kj  is horizontal hydraulic conductivity of the
geologic material near the well opening, in
feet per day; and
b is thickness, in feet, approximated using the
length of the open interval as reported in
the driller’s report.

The use of the length of a well’s open interval for b
overestimates values of Kj, because the equations assume that
all the water flows horizontally within a layer of this thickness.
Although some of the flow will be outside this interval, the
amount may be relatively small because in most sedimentary
deposits, vertical flow is inhibited by layering (Freeze and
Cherry, 1979).
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The resulting estimates of hydraulic conductivity using
the methods described earlier in this section are presented
in section, “Hydrogeologic Setting.” The median values of
estimated hydraulic conductivities for the aquifers are similar
in magnitude to values reported by Freeze and Cherry (1979,
p- 29) for similar materials. The estimates are biased toward
the more productive zones in these units and may not be
representative of the entire unit. The minimum hydraulic
conductivities for the hydrogeologic units indicate that
there are zones of low hydraulic conductivity in most units.
Although many uncertainties are in the estimated values of
hydraulic conductivity, these estimates provide an initial
assessment of the relative differences in hydraulic conductivity
between the different hydrogeologic units.

Hydrogeologic Setting

The Quincy Basin is a structural and topographic low
in south-central Washington (fig. 1). The area is underlain
by three major stratigraphic units in which most locally
significant groundwater occurs. The stratigraphic units are,
in ascending order: (1) the Columbia River Basalt Group
(CRBG), (2) the Ringold Formation (RING), and (3) the
sediments deposited predominantly by catastrophic proglacial
flooding (QDEP) (table 1 and figure 6). The surficial geology
of the study area is shown in figure 5.

The geologic and hydrogeologic setting was previously
described by Tanaka and others (1974) and Drost and others
(1990) and is summarized here. During the Tertiary Period,
flood basalts flowed intermittently into the region, resulting
in a total basalt thickness in excess of 15,000 ft. Between
eruptions, particularly those producing the younger flows,
minor amounts of sediment (Ellensburg Formation) were
interbedded with the basalts. Individual basalt flow tops and
bottoms form productive water-bearing zones. Following the
emplacement of the basalt flows, deformation took place in the
form of northwest- to west-trending folds. The greatest degree
of deformation was west of the study area and resulted in a
series of folds known as the Yakima fold belt.

Folding and subsidence in the Miocene Epoch resulted
in the deposition of fluvial and lacustrine sediments in the
Quincy Basin by ancestral rivers and lakes that occupied
the region. These sediments formed the Ringold Formation
(Pliocene), which consists of sand, silt, and clay. The sandier
zones of the Ringold have become saturated since irrigation
began and now produce moderate well yields. During the late
Pleistocene Epoch, glacial flood and melt water deposited
gravels, sands, and silts throughout much of the study area.
These floods scoured much of the earlier deposits, down to
and into the basalts, and redeposited them in other locations.
The resulting sediments form thick, productive aquifers where

saturated. During the Quaternary Period, loess, dune sand,

and alluvium were deposited on top of the older sediments

or basalt. The geologic units were delineated into three
generalized hydrogeologic units—QDEP, RING, and CRBG—
based primarily on the textures and position of the geologic
materials within the study area (table 1).

Columbia River Basalt Group (CRBG)
Hydrogeologic Unit

The Columbia River Basalt Group (CRBG)
hydrogeologic unit underlies the entire study area and occurs
at land surface in the higher-altitude margins (figs. 5, 6). Five
hundred fifty-four of the project wells are completed in the
CRBG unit (table 1), where overlying sedimentary units (1)
do not occur, (2) are insufficiently saturated, or (3) are unable
to yield sufficient quantities of water to wells. The top altitude
of the CRBG Unit (fig. 8)—which is based on the geologic
map, project well logs, and hydrogeologic sections—was used
for defining the base of the sedimentary hydrogeologic units.
Manually drawn 100-ft contours of the buried basalt surface
in the study area extent were combined with DEM land-
surface altitudes where the basalt outcrops to generate a digital
representation of basalt-surface altitude (fig. 8). The altitude of
the basalt ranges from more than 3,000 ft in the Beezley Hills
to about 800 ft near the center of the basin. The estimated
horizontal hydraulic conductivity for the CRBG unit ranged
from 0.3 to 770 ft/d, with a median of 21 ft/d, based on data
from 81 wells open to the unit (tables 1 and 5).

The basalts form a complex series of aquifers and
confining units at depth in the study area, in which most
groundwater movement occurs in zones between basalt flows
containing features such as flow breccia, rubble, and vesicles
(Kahle and others, 2011). The principal basalt aquifer units
in the study area are, from youngest to oldest, (1) the Saddle
Mountains Basalt, (2) the Wanapum Basalt, and (3) the Grande
Ronde Basalt. The upper surface of the basalts was refined
for this study using depth-to-basalt data from the project well
set and unit surface altitudes of the principal basalt aquifers
mapped previously by Burns and others (2011).

Unconsolidated Sedimentary Hydrogeologic
Units

Sedimentary hydrogeologic units, also referred to as
overburden, include all the sediment that overlies the basalt,
and consist of the Ringold Formation and Quaternary deposits.
The thickness of this combined overburden (fig. 9) was
calculated by subtracting the basalt-surface altitude (fig. 8)
from the land-surface altitude. Overburden thickness is greatest
(more than 400 ft thick) in the center of the basin (fig. 9).
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Hydrogeologic Setting
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Figure 8. Top altitude of basalt surface in the Quincy Basin study area, Washington.
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Quaternary Deposits (QDEP)

The Quaternary deposits (QDEP) consist primarily of
cataclysmic flood deposits with minor alluvium, colluvium,
and eolian sand, with caliche in places. The unit is coarsest
(gravel and boulders) near the mouth of Grand Coulee near
Soap Lake and finest to the south and west where the unit
is composed primarily of sand. The unit generally ranges in
thickness from 50 to 150 ft but nears 300 ft in places near
Ephrata (fig. 7, cross section B-B”). The QDEP unit occurs at
land surface over most of the Quincy Basin (fig. 6). Although
most project wells are completed in deeper hydrogeologic
units, 45 of the project wells are completed in the QDEP
where the unit is sufficiently thick and saturated to yield water
to wells. The estimated horizontal hydraulic conductivity for
well 18N/22E-02R02 (the only well completed in QDEP with
available data to estimate hydraulic conductivity) is 250 ft/d.

Ringold Formation (RING)

The Ringold Formation (RING) is composed
predominantly of layered silt, sand (sometimes described as
sandstone), massive clay (with occasional gravel), and caliche,
and generally is overlain by coarse Quaternary deposits. The
unit is underlain everywhere by basalt and, in places, has as
much as several feet of gravel at the Ringold-CRBG interface.
It occurs at land surface in a few locations, primarily limited to
the lower slopes in the southern part of the Quincy Basin and
along some flood channels (fig. 6). The RING unit generally
ranges from 100 to slightly more than 300 ft thick near the
central part of basin (fig. 7). Despite the unit being primarily
fine-grained, 62 project wells are completed in the unit
(table 1) and provide usable quantities of water. The estimated
horizontal hydraulic conductivity for the RING unit ranged
from 20 to 290 ft/d , with a median of 48 ft/d, based on data
from 10 wells open to the unit (tables 1 and 5).

Hydrologic Setting

Recharge

Prior to the 1950s, infiltration of precipitation was the
primary source of groundwater recharge in the study area.
Since the construction of the Columbia Basin Irrigation
Project starting in the early 1950s, irrigation return flows
have become a substantial source of additional groundwater
recharge beneath agricultural areas in the Quincy Basin. The

spatial distribution and temporal variation of recharge from
precipitation and irrigation return flows to the Columbia
Plateau Regional Aquifer System have been quantified

using a monthly SOil WATer balance (SOWAT) model
(Kahle and others, 2011). The SOWAT model uses simple
relations among climatic, soils, land cover, and irrigation
data to compute irrigation requirements and surplus moisture
available for recharge. The SOWAT model incorporated
evapotranspiration estimates derived from remotely sensed
land-surface temperature data that were combined with other
spatially distributed datasets including precipitation, soil
moisture storage, and irrigation practices (Kahle and others,
2011). Estimated mean annual groundwater recharge for
predevelopment (pre 1920) conditions in the Quincy Basin
generally was less than 1.0 in/yr, whereas during current
conditions (2000-07), recharge was estimated at as much as
10.0 in/yr within the CBP (Ely and others, 2014).

Historical Groundwater Levels

Water levels measured during 193945 in wells
screened in both overburden sediments and underlying
basalt aquifers (fig. 104) may be considered representative
of the predevelopment conditions that were present before
the construction of surface-water delivery infrastructure or
substantial groundwater withdrawals. Groundwater flowed
from the upland areas on the northeastern and northwestern
parts of the basin; toward the central part of the basin; and
then generally toward Crab Creek, Moses Lake, and what is
now the Potholes Reservoir. Groundwater flow direction is
determined by connecting a line perpendicular to the water-
level contours and going from high to low elevations. Because
the water levels mapped in figure 10 are a combination of
measurements from both overburden and basalt aquifers,
actual water-level gradients could differ between the
overburden and basalt aquifers. Therefore, the directions of
predevelopment groundwater flow may not be adequately
represented in figure 10 for all areas.

Water levels in the basalt and overburden aquifers began
to rise substantially in some areas following the development
of surface-water delivery infrastructure and associated
agricultural irrigation in the early 1950s. A hydrograph
depicting a 200-ft increase in water level (well 19N/23E-
34R01, fig. 10B) from 1957 to 1985 exemplifies the change
in water levels measured beneath irrigated areas where both
basalt and the overburden occur.
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Figure 10.—Continued

Simulation of Groundwater Flow

The groundwater model developed in this study is based
on a simple conceptual model in which natural precipitation
and irrigation flows recharge the aquifer system by vertical
flow through sedimentary overburden (where sediments
occur) and into basalt layers. Regional groundwater-flow
through basalt-aquifer layers occurs from areas to the north
and east of the model domain and generally discharges to the
Columbia River, although flow through the deepest basalt
layers may discharge farther away. The model was designed
to address a primary project objective—quantification of
the spatial distribution of additional groundwater in storage
resulting from agricultural development. The model also can
be used to address secondary project objectives, which include
assessments of various pumping and increased irrigation
efficiency scenarios on groundwater levels.

Numerical Method

Simulation of a substantially rising water table, such
as that which occurred in the Quincy Basin once irrigation
of the area began, involves rewetting nonlinearities and
associated numerical instabilities. The Newton formulation
of the unconfined groundwater-flow equation available in
MODFLOW-NWT (Niswonger and others, 2011) facilitates
simulation of these systems, and, therefore, was selected to
simulate the Quincy Basin.

Spatial Discretization

The model grid contains 101 rows and 117 columns of
square finite-difference cells that are 1 km on a side (fig. 11).
The grid was positioned so that the model cells correspond
with the rasterized SOWAT model recharge and groundwater-
withdrawal data to enable the use of the SOWAT data to
specify historical flow rates of recharge and groundwater
withdrawals into and out of the model domain. The active
model domain is east of the Columbia River, and encompasses
2,526 mi2, or about 55 percent of the area covered by the
rectangular finite-difference grid. Five model layers (table 1)
represent the two hydrogeologic units in the sedimentary
overburden and the three basalt units underlying them. The
thicknesses of individual model layers vary spatially to
represent the thickness of the Quaternary depositional unit,
Ringold Formation, Saddle Mountains Basalt, Wanapum
Basalt, and Grande Ronde Basalt. The upper 600 ft of the
Grande Ronde Basalt is represented by the lowest model layer.
The spatial extents of the CRBG units were taken from Ely
and others (2014). Although the five model layers generally
correspond to these hydrogeologic units, the hydrogeologic
units do not occur in all areas of the model domain. In order
to simulate hydraulic connection between hydrogeologic
units where a stratigraphically intervening hydrogeologic
unit is not present, the absent units were assigned a 1-ft layer
thickness and the specified hydraulic properties were changed
to represent hydraulic conductivities of the layer below so
that all layers are represented everywhere in the active model
domain. This results in the simulated flow passing through the
“altered” layer as if it were part of an adjacent model layer.
Model layers 1-4 were simulated as convertible between
confined and unconfined conditions. Layer 5 was simulated as

confined.
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Time Discretization

A steady-state stress period was used to simulate
groundwater conditions in the Quincy Basin prior to 1920.
Ninety-four annual stress periods encompass the time
interval of January 1, 1920-December 31, 2013, that was
used for calibration to observed water levels. These annual
stress periods were selected to correspond to the temporal
discretization of Ely and others (2014) from which the
recharge and groundwater withdrawals of this model are
specified. For the scenarios described in this report, the
final transient stress period (2013) was run to steady-state
conditions and model input was modified for the steady-state
scenarios.

Boundary Conditions

Boundary conditions define the locations and manner
in which water enters and exits the active model domain.
Conceptually, water enters the aquifer system as recharge from
precipitation and irrigation and through lateral groundwater
flow and exits the system as discharge to the Columbia River
and other streams, lateral groundwater flow, and groundwater
pumpage. Three types of model boundaries were used: (1)
no-flow boundaries (bottom and edges of the model), (2) head-
dependent flux boundaries (streams, drains, and general-head
boundaries), and (3) specified-flux boundaries (pumpage and
recharge).

No-Flow Boundaries

The lateral and bottom surfaces of the model domain are
no-flow boundaries except for those lateral parts of the model
domain that simulate groundwater underflow with head-
dependent flow boundaries (see section, “Head-Dependent
Flux Boundaries™).

Specified Flux Boundaries

Two types of specified fluxes were simulated in the
model: (1) recharge and (2) groundwater withdrawals

(pumpage).

Recharge

The annual recharge rates specified for the Quincy Basin
model documented in this report came from the regional
model of Ely and others (2014), which includes both natural
and anthropogenic (for example, irrigation flows) components.
Although the regional model of Ely and others (2014) uses
larger (3-km?) finite-difference cells, recharge for that model

was computed with 1-km? raster arrays that are compatible
with the 1-km? finite-difference cells of this model. Ely

and others (2014) estimated natural recharge using gridded
historical estimates of annual precipitation for the period
1895-2007; predevelopment recharge was estimated as the
average natural recharge for this period, irrigation recharge
and irrigation pumping were estimated using a remote-sensing
based SOWAT model for 1985-2007 (Kahle and others, 2011),
and pre-1985 irrigation recharge and pumping were estimated
using previously published compilation maps and the history
of large-scale irrigation projects. The recharge estimated for
2007 (fig. 12) was specified for all subsequent years of the
simulation (2008—13). Because 2007 precipitation was similar
to the mean annual precipitation (Kahle and others, 2011),
extrapolation of the 2007 simulated recharge was a reasonable
representation for subsequent years.

Groundwater Withdrawals

The groundwater withdrawals estimated with the SOWAT
model used by Ely and others (2014) were used for this model
and were simulated with the WELL package (McDonald and
Harbaugh, 1988). Assignment of the SOWAT model-estimated
groundwater withdrawals to appropriate depths likely
introduces the greatest errors in the model because records
of the actual location and magnitude of withdrawals are not
available. For each stress period, the groundwater withdrawal
estimated by the SOWAT model for each model cell was
assigned to one or more wells (fig. 13). Well locations were
obtained from the Washington State Department of Ecology
well database. The total amount of pumping in each cell was
split equally among the number of wells in the cell. If no well
was in a cell with groundwater withdrawals, the groundwater
withdrawals were distributed between layers based on the well
depths from the next nearest cell that contained a well. Some
structural model error was a byproduct of the specification of
these specified groundwater withdrawals.

The magnitude of groundwater withdrawals from the
study area was negligible until the 1930s, when it began to
increase to about 10,000 acre-ft/yr by the early 1940s (fig. 14).
Withdrawal rates increased rapidly from the mid-1960s
through the mid-1980s—from about 50,000 acre-ft/yr in 1965
to more than 275,000 acre-ft/yr by 1985.

Head-Dependent Flux Boundaries

Groundwater flows to rivers, streams and lakes,
agricultural drains, reservoirs, and flow across the model
perimeter depend on the hydraulic heads of those features and
the aquifer groundwater levels, and, therefore, are simulated as
head-dependent boundaries.
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General Head Boundaries

The Columbia River bounds the western side of the
model domain and was simulated with the General Head
Boundary (GHB) package of MODFLOW (McDonald and
Harbaugh, 1988) (fig. 11). The part of the Columbia River that
borders the model domain was simulated without dams prior
to 1963. For simplicity, the stage change due to construction
of the Wanapum Dam (fig. 1) was simulated to occur in 1963.
River stages were set to 520 ft prior to dam construction and
570 ft afterwards based on topographical map information.

The underflow of groundwater in the CRBG through the
northern, eastern, and southern perimeter of the study area was
simulated at the locations in figure 11 with the GHB package.
The GHB cells were connected to model layer 5, which
represents the top of the Grande Ronde Basalt. Water levels
specified for each of the groundwater underflow GHB cells in
this model were taken from corresponding locations simulated
in layer 36 (which represents the top of the Grand Ronde
Basalt) during the steady-state, predevelopment stress period
of the revised Columbia Plateau Regional Aquifer System
(CPRAS) model (Ely and others, 2014).

The GHB package also was used to simulate subsurface
exchange of water from certain naturally occurring lakes with
the underlying aquifers (fig. 11). Representation of the lakes in
this way allows flow into and out of a lake cell in proportion
to the difference between the head in the cell and the specified

head of the lake. The specified lake stages were determined
from USGS 1:24,000-scale topographic maps because no data
about changes in lake stages were available with the exception
of Moses Lake. Stage data for Moses Lake was provided

by Reclamation (Alexis Mills and Karl Williams, Bureau of
Reclamation, written commun., 2017).

Drains

Agricultural drains (fig. 11) were simulated with the
Drain (DRN) package of MODFLOW (McDonald and
Harbaugh, 1988). The drain-boundary altitudes were specified
as the minimum DEM land-surface altitude in the model cell
containing the drain. Drain locations were obtained from
Reclamation (Karl Williams, Bureau of Reclamation, written
commun., 2017).

Streams

The part of Crab Creek within the model domain was
simulated with the Streamflow-Routing (SFR) package
of MODFLOW, as were other smaller naturally occurring
streams in the model (fig. 11), to route streamflow and
calculate stream-aquifer exchanges (Niswonger and Prudic,
2005). The model has 14 simulated stream segments that
are coincident with the underlying MODFLOW cells (U.S.
Geological Survey, 2014).



24 Simulation of Groundwater Storage Changes in the Quincy Basin, Washington

The exchange of water between streams and groundwater
is controlled by the difference in the groundwater level and
stream stage in each cell, and by the hydraulic properties of
the streambed at the river-aquifer boundary in each cell, which
is represented in the model by a streambed conductance term.
The depth of each stream within each reach was computed
by SFR using Manning’s equation for open channel flow
assuming a wide rectangular channel, which is a reasonable
approximation of channel geometry. For routing streamflow, a
constant value of 0.04 was used for Manning’s coefficient (Ely
and Kahle, 2012).

Reservoirs

Two reservoirs, Potholes Reservoir and Billy Clapp Lake,
were included in the model using the Reservoir (RES) package
of MODFLOW (Fenske and others, 1996). The exchange of
water between the reservoirs and groundwater is controlled
by the difference in the groundwater level and reservoir stage
in each cell, and by the hydraulic properties of the reservoir-
aquifer boundary in each cell, which is represented in the
model by the conductance term of 0.01 ft*/d. Stage data for
the two reservoirs was provided by Reclamation (Alexis Mills
and Karl Williams, Bureau of Reclamation, written commun.,
2017).

Horizontal Flow Barriers

The Frenchman Hills Fault (Lidke, 2003) acts as a
barrier to groundwater flow and was simulated as a horizontal
flow barrier (HFB; Hsieh and Freckleton, 1993) in model
layers 14 at the locations shown in figure 11. The decreased
hydraulic conductance between adjacent model cells is
specified with a hydraulic characteristic for each HFB that is
dimensionally equivalent to the hydraulic conductivity of the
fault zone (in the direction perpendicular to the fault plane)
divided by the width of the fault zone. A single hydraulic
characteristic for HFBs representing the Frenchman Hill
Fault barrier was parameterized and estimated during model
calibration.

Model Calibration

Model calibration is the adjustment of model parameters
within reasonable limits so that the differences (residuals)
between measured and simulated groundwater levels are
minimized with respect to an objective function. The
calibration is assessed by examining how well the simulated
quantities fit the measured quantities.

Calibration Procedure

The model was calibrated using a combination of
traditional trial-and-error adjustments of parameters and
the parameter estimation program (PEST; Doherty, 2005,
20006), enhanced with Pilot-Point Parameterization (Doherty,
2003; Doherty and others, 2010), Tikhonov Regularization
(Doherty, 2003; Fienen and others, 2009), and Singular
Value Decomposition (Doherty and Hunt, 2010). PEST
automatically adjusted model parameters (horizontal and
vertical hydraulic conductivity; specific storage; specific
yield; and stream, drain, HFB, and general head boundary
conductance) within specified limits through a series of model
runs. After each model run, simulated groundwater levels were
compared to measured values. Model runs continued until the
differences (residuals) between simulated and measured values
were minimized.

Pilot-point parameterization was used to represent spatial
heterogeneity in horizontal and vertical hydraulic conductivity,
specific yield, and specific storage. Pilot points were evenly
distributed over the entire model domain by hydrogeologic
unit and were used as surrogate parameters at which values for
horizontal and vertical hydraulic conductivity were estimated
during calibration. Estimated values of horizontal and vertical
hydraulic conductivity and storage coefficients at pilot points
were interpolated throughout the active model domain using
kriging (a geostatistical algorithm) procedures in PEST. The
result is a smooth variation of the hydraulic property over
the model domain. Numerous studies have used pilot points
for groundwater model calibration (de Marsily and others,
1984; LaVenue and Pickens, 1992; Petkewich and Campbell,
2007) and have proven them to be powerful, flexible tools for
representing spatial heterogeneity in various types of aquifer-
hydraulic properties.



Pilot points generally were spread in a regular grid
pattern where possible. The pilot points were distributed
vertically so that each hydrogeologic unit contained pilot
points. If a pilot point for any given hydrogeologic unit
occupied a location where that unit was absent, it was deleted
from that location for that unit to ensure that the pilot points
for each hydrogeologic unit were kriged only to other points
within that unit.

Water-Level Observations

The model-calibration dataset included a total of 4,064
water levels measured in 710 wells with screen interval
information. Although only a single measurement was
recorded from some wells, multiple measurements from many
of the wells constituted water-level hydrographs of as much
as 68 years in duration. The calibration data set included 377
water-level measurements that were used to construct the map
of predevelopment water levels (fig. 104) that were located
within the active model domain to represent the 1939 water-
table altitude. No depths were available for wells shown in
figure 104, so the water levels were assigned to the whichever
hydrogeologic unit was at the surface where the well was
located.

The weight (®) assigned to observations should represent
the measurement error, and typically is computed as the
inverse of the total observation-error variance. Substantial
differences in measurement errors of the water levels were
unable to be determined, and, therefore, were assumed to be
equivalent, which resulted in uniform weighting among the
water-level observations.
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Final Parameter Values and Sensitivities

The ability to estimate a parameter value during the
calibration process is related to the sensitivity of the model-
simulated output to changes in the parameter value. For
example, if a parameter has a high sensitivity, the observation
data effectively estimate the value. For parameters with low
sensitivity, changes in the value have little effect on the model-
calibration process. Insensitive parameters may or may not
be close to their corresponding field values and are not likely
to be estimated accurately during the parameter-estimation
process.

Relative composite sensitivities are a measure of
composite changes in model outputs that are caused by small
changes in the value of a modeled parameter (Doherty, 2005).
For a given modeled parameter, the larger the value of the
associated relative composite sensitivity, the more sensitive
the model is to that parameter. Relative composite sensitivities
were calculated and analyzed for the parameters used in the
model-calibration process (table 2). Median sensitivities are
presented for each hydrogeologic unit for the horizontal and
vertical hydraulic conductivities, the storage coefficients, and
other parameters.

The simulated water levels were most sensitive to
parameters representing the groundwater flow to the Columbia
River and groundwater underflow across the southern and
northwestern model perimeter (GHB conductances). The
simulated groundwater levels were most insensitive to the
vertical hydraulic conductivity of the Quaternary deposits, the
storage coefficients of the three basalt layers, and the GHB
conductances of some of the lakes.

The calibrated values of the model parameters
representing aquifer hydraulic conductivity, storage, and
boundary and fault conductances are tabulated in table 2.

The median calibrated values of hydraulic conductivities and
storage coefficients are similar to corresponding values in other
studies (Ely and others, 2014; Heywood and others, 2016).
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Table 2. Parameter sensitivities and final values for all parameters used in calibration of groundwater model for Quincy Basin,

Washington.

[Specific yield pilot points: Specific yield numbers are not adjusted by parameter estimate code PEST. Abbreviation and symbol: GHB, General Head

Boundary; —. not computed]

Estimated value

Hydrogeologic Model Number of Median
unit layer parameters sensitivity Minimum Median Maximum
Horizontal aquifer hydraulic conductivity pilot points, in feet per day
Quaternary deposits 1 26 0.005774187 16.69 46.55 858.67
Ringold Formation 2 16 0.014776585 5.47 57.40 309.16
Saddle Mountain Basalt 3 24 0.000903991 2.46 4.80 7.21
Wanapum Basalt 4 22 0.018148775 1.00 4.29 227.79
Grande Ronde Basalt 5 129 0.007902205 0.06 4.58 5,400.74
Vertical aquifer hydraulic conductivity pilot points, in feet per day
Quaternary deposits 1 26 7.72428 x 1073 4.74 5.01 5.73
Ringold Formation 2 16 0.000103905 4.10 4.96 6.00
Saddle Mountain Basalt 3 24 0.000288208 0.03 0.05 0.06
Wanapum Basalt 4 23 0.005611046 0.00 0.05 0.15
Grande Ronde Basalt 5 129 0.000502951 0.02 0.05 0.17
Specific storage pilot points
Ringold Formation 2 16 0.001875517 0.10 0.15 0.34
Saddle Mountain Basalt 3 24 7.72428 x 10 9.98 x 1077 1 %10 1.01 x 107
Wanapum Basalt 4 23 6.71547 x 105 9.559 x 1077 1x10° 1.06 x 1076
Grande Ronde Basalt 5 24 9.16492 x 10 9.43 x 1077 1x10° 1.05 x 107
Specific yield pilot points
Quaternary deposits 1 1.38471 x 1073 0.2 0.2 0.2
Ringold Formation 2 2.25016 x 1073 0.2 0.2 0.2
Saddle Mountain Basalt 3 1.50011 x 1073 0.2 0.2 0.2
Wanapum Basalt 4 1.56533 x 107 0.2 0.2 0.2
Grande Ronde Basalt 5 1.50011 x 1073 0.2 0.2 0.2
Other calibration parameters

Stream conductance 14 5.62 x 1073 0.094923395 14.1745005 39,868.92
Drain conductance (feet per day) 1 1.33 x 102 - 52,089.03 -
GHB conductance (Columbia River) 1 0.132533 - 25.27162 -
GHB conductance (northwestern boundaries) 1 0.107717 - 1,209.831 -
GHB conductance (southern boundary) 1 0.563673 - 17,876.23 -
GHB conductance (northeastern boundaries) 1 2.16 x 1073 - 3.55451 -
GHB conductance (Soap Lake) 1 3.50 x 104 - 3.07262 -
GHB conductance (Lenore Lake) 1 8.34 x 104 - 2.337191 -
GHB conductance (Alkali Lake) 1 5.98 x 107 - 1.118948 -
GHB conductance (Blue Lake) 1 232 %10 - 1.497946 -
GHB conductance (Moses Lake) 1 2.68 x 1073 - 2.778726 -
GHB conductance (Brook Lake) 1 1.72 x 10 - 5.083055 -
Hydrologic flow barrier conductance 1 1.87 x 1073 - 1.64 x 1073 -




Assessment of Model Fit

A graphical and descriptive comparison of simulated and
measured groundwater levels provides a clear insight into the
model fit and complements the statistical measures of model
fit. Such a comparison indicates how well the model replicates
the flow system. It is important to determine that the model
accurately simulates the regional direction and amounts of
flow in the groundwater-flow system.

Comparison of Measured and Simulated
Hydraulic Heads

The results of the calibration were assessed by
comparing measured and simulated groundwater levels and
by examining the mean and standard deviation of residuals
(unweighted) and the root mean-square error (RMSE) of
residuals for the groundwater levels. The mean of residuals
represents the average difference between all measured and
simulated values (residuals), and the sign of the mean of
residuals (bias) indicates whether the model is overpredicting
or underpredicting values (negative and positive mean of
residuals, respectively). The standard deviation of residuals is
a measure of how much variation there is in residual values
greater than and less than the mean residual value. A low
standard deviation indicates that the residuals tend to be close
to the mean, whereas a high standard deviation indicates that
residuals are spread out over a large range of values around the
mean. The RMSE of weighted residuals provides a measure
of variation that considers measurement accuracy. The RMSE
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of the difference between simulated and measured hydraulic
heads in the observation wells, divided by the total range

in water levels in the groundwater system (Anderson and
Woessner, 1992, p. 241), also should be less than 10 percent to
be acceptable (Drost and others, 1999).

The RMSE and the standard deviation of the residuals
were 47.61 and 47.59 ft, respectively. The scaled RMSE was
0.048 (4.8 percent) and was obtained by dividing the RMSE
of the residuals by the 1,001-ft range of observed water
levels. Overall, because the groundwater levels have a RMSE
divided by the total range of values of less than 10 percent,
the model has a good fit (Drost and others, 1999). The mean
error, calculated as the mean of the residuals (measured minus
simulated water levels), was -1.38 ft, indicating that overall
simulated water levels are slightly higher than observed water
levels. The mean absolute error (the mean of the absolute
value of the residuals) was 36.02 ft.

A plot of measured compared to simulated groundwater-
level altitudes provides a useful graphical assessment of
model calibration (fig. 15). Measured compared to simulated
values should plot close to a line with a slope of 1.0 and
an intercept of zero. This diagonal line represents perfect
agreement between measured and simulated values (the line
of equal measured and simulated values), and the magnitude
of the residual (difference between measured and simulated
values) is indicated in the distance of the value above or
below the line. Positive residuals (measured value is greater
than simulated) and negative residuals (measured value is less
than simulated) plot above and below the line, respectively.
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Measured compared to simulated values shown in figure 15
generally are along the line of equal measured and simulated
values, indicating a good model fit; groundwater-level
altitudes above 1,300 ft tend to be underpredicted in some
areas with high water levels. Some model bias is indicated by
this deviation from a random residual distribution.

A spatial comparison of simulated and measured
hydraulic heads indicates that the model reasonably simulates
the measured groundwater levels (fig. 16). The residuals
are calculated by subtracting the simulated heads from the
measured heads, so positive residuals are at sites where
the model predicts heads that are lower than measured
(underprediction), and negative residuals are at sites where
the model predicts heads that are higher than measured
(overprediction). The smaller the residuals, the better the
model is at predicting the water levels. The spatial distribution
of the hydraulic-head residuals does not indicate any major
patterns of bias, with the exception of the Moses Lake area
and north along Crab Creek where the values tend to be
overpredicted.

Simulated Water Levels

The general directions of simulated groundwater flow
during 2013 may be inferred from contours of water-level
altitudes simulated for 2013 (fig. 17). Groundwater generally
flows either towards Crab Creek, Moses Lake, and Potholes
Reservoir or towards the Columbia River, as the main
discharge areas of the model. The highest water levels occur in
the northeastern corner of the model.

The simulated rise in groundwater levels since 1920
in areas of the Quincy Basin primarily is a function of
the magnitude of groundwater recharge and groundwater
withdrawals in the area. Groundwater levels have risen
substantially (generally from 50 ft to as much as 250 ft) in
the western part of the study area (fig. 18), where simulated
recharge is primarily 5-10 in/yr (fig. 12). The unconsolidated
sediments in these areas generally were unsaturated prior to
irrigation occurring in the area. Water levels also have risen
25-100 ft in the central part of the study area and occur where
simulated recharge primarily is 5-10 in/yr. The highest water-
level increases occur south of the hydrologic flow barrier that
represents the Frenchman Hills Fault along the southern edge
of the model. Simulated water levels have increased in that
region by 250 ft to more than 400 ft in an area that receives as
much as 12.5 in/yr of simulated recharge. The water levels in
that area may be subject to larger uncertainties as there is only
a small sliver of land between the horizontal flow barrier and
the southern boundary of the model. Little calibration data are
available to verify the water-level increases in that area.

Some areas of the model (particularly a large swath in the
eastern half) have had slight simulated water-level declines

of less than 20 ft, with a small region having simulated
declines of 2040 ft presumably due to increased groundwater
pumping. The largest simulated declines of more than 40 ft
occur in the model cells that contain Billy Clapp Lake (fig. 18)
and are due to structural model error and are not considered

to be realistic. Further spatial refinement of the model grid
and hydraulic parameters would be needed to more accurately
simulate changes in water levels near Billy Clapp Lake.

Simulated Groundwater Budgets

The net flows (inflow minus outflow from the model
domain) of groundwater-model components were calculated
for each model stress period (fig. 19). Prior to the mid-1940s,
variations in annual precipitation resulted in small amounts
of recharge (generally less than 2 in/yr) and relatively
modest changes in storage. Note that increased groundwater
storage is an outflow from the groundwater-flow system and
is negatively signed; increasing negatively signed absolute
values of storage in figure 19 indicate increases in the quantity
of stored groundwater. From the late 1940s through the mid-
1960s, increased anthropogenic recharge due to irrigation and
the leakage of water from Potholes Reservoir substantially
increased groundwater storage in the aquifer system.
Increasing groundwater withdrawals (pumpage) since the
mid-1960s have abated further contributions to storage, with
changes in storage stabilizing since about 1980. Net changes
to groundwater storage since 1980 have resulted primarily
from variations in groundwater recharge caused by changes in
annual precipitation.

The simulated groundwater budgets in the Quincy
Subarea calculated for the initial steady-state stress period
(which represents average “predevelopment” conditions
prior to 1920) and the last transient stress period (which
represents the year 2013) are summarized in table 3. During
the initial steady-state conditions, vertical recharge, lateral
groundwater flow from the surrounding area, and some
seepage from streams into the subarea were balanced by
discharge to streams, and lateral groundwater flow out through
the downgradient Quincy Subarea boundary (fig. 11). By
2013, substantially more recharge into the area compared to
the initial conditions (as well as inflow from the reservoirs)
resulted in increased discharge to streams, lakes, and drains,
and increased lateral groundwater flow out of the subarea.
Groundwater withdrawals from wells were the largest outflow
from the subarea. The distribution of both recharge and
groundwater withdrawals causes increases and decreases in
groundwater storage in different areas, which are summarized
as outflows to and inflows from storage, respectively, in
table 3. During 2013, the simulation showed a 27,000 acre-ft
net increase in groundwater storage for the Quincy Subarea.
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Table 3. Groundwater budget of the Quincy Groundwater

Management Subarea, Quincy Basin, Washington, pre-1920 and

2013.

[Values in thousands of acre-feet per year]

Pre-1920
(steady state) 2013
Inflows
Recharge 28 273
Groundwater flow from 37 27
surrounding model domain
Lakes and groundwater flow 27 25
from model boundary
Streams 1 0
Reservoirs 0 22
Storage 0 38
Total 93 385
Outflows
Groundwater flow to 44 55
surrounding model domain
Lakes and groundwater flow 20 23
from model boundary
Streams 28 35
Reservoirs 0 1
Groundwater withdrawals 0 200
Drains 1 6
Storage 0 65
Total 93 385

Water budgets for 2013 also were calculated for three
other areas of interest within the Quincy Subarea: (1) High
Hills Irrigation development area, (2) Moses Lake Irrigation
Rehabilitation District, and (3) the City of Quincy (fig. 20 and
table 4). In the High Hills area, inflows primarily are the result
of groundwater flow from the surrounding area and recharge
from the surface. Groundwater withdrawals of 974 acre-ft
account for 22 percent of the total outflow, with the remainder
flowing out to Soap Lake and the surrounding area. There was
a net increase in the amount of water stored in the area of 59
acre-ft for 2013. In the Moses Lake area, inflows primarily
are the result of groundwater flow from the surrounding area,
recharge from the surface, and from storage. Groundwater
withdrawals of 19,242 acre-ft account for almost 67 percent
of the total outflow, with most of the rest of the groundwater
flowing out to the surrounding area. In 2013, there was a net
decrease of 4,614 acre-ft in the amount of water stored in the
area. For the area around the City of Quincy, inflows primarily
are the result of groundwater flow from the surrounding
area and recharge from the surface, with a minor amount
coming from storage. Groundwater withdrawals of 3,017
acre-ft account for 43 percent of the total outflow, with the
remainder flowing out through the groundwater system to
the surrounding area. In 2013. there was a net decrease of 85
acre-ft in the amount of water stored in the area.
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Table 4. Groundwater budget of the High Hills Irrigation development area, Moses
Lake Irrigation Rehabilitation District, and the City of Quincy, Washington, 2013.

[Values in acre-feet per year]

High Hills Moses Lake City of Quincy
Inflows
Recharge 980 8,467 2,231
Groundwater flow from 3,432 15,062 4,622
surrounding model domain
Lakes 0 3 0
Streams 0 204 0
Storage 6 5,106 85
Total 4,417 28,841 6,938
Outflows
Groundwater flow to 3,367 8,916 3,921
surrounding model domain
Lakes 11 4 0
Streams 0 186 0
Groundwater withdrawals 974 19,242 3,017
Storage 65 492 0
Total 4,417 28,841 6,938

Simulated Storage Changes in the Quincy
Subarea

The cumulative simulated change in storage through
2013 was summarized for the entire model domain as well as
the Quincy Subarea within the model domain (fig. 1) for all
model layers as well as just the unconsolidated layers (fig. 21)
in which Ecology regulates groundwater withdrawals. Note
that cumulative increases in groundwater storage are shown
as a positive quantity in figure 21 (in contrast to the negative
rates of flow from the groundwater system into storage
shown in figure 19). To evaluate the effect of approving
pending applications for groundwater-withdrawal permits,
anthropogenic additions to storage (referred to as “artificially-
stored” groundwater by Ecology) must be quantified. The
changes to groundwater storage in the Quincy Subarea for all
model layers, as well as just for the unconsolidated layers,
are shown with the total for the model domain (fig. 21). The
additional groundwater in storage since the predevelopment
period in the Quincy Subarea rapidly reached about 10 million
acre-ft by 1980 and has slowly increased since then to about
11.5 million acre-ft in 2013. The storage increase for just the
unconsolidated units in the Quincy Subarea totaled about
9.5 million acre-ft by 2013. A small sliver of the Quincy

Subarea south of the Frenchman Hills Fault is isolated from
the remainder of the Subarea and had an increase in storage
of 0.31 million acre-ft by 2013. Virtually all of the increase in
storage for the model domain occurs in the Quincy Subarea.
A larger change in storage was noted in this study than in
Tanaka and others (1974). Tanaka and others (1974) reported
an increase in storage in their upper aquifer, which equates to
the unconsolidated units, of 2.7 million acre-ft from 1952 to
1968, whereas this study simulated an increase of about 4.9
million acre-ft of increased storage for the same period.

Limitations and Appropriate Use of the Model

A groundwater-flow model represents a complex, natural
system with a set of mathematical equations that describe
the groundwater-flow system. Intrinsic to the model is the
error and uncertainty associated with the approximations,
assumptions, and simplifications that must be made.
Hydrologic-modeling errors typically are the consequence
of a combination of (1) input data, (2) representation of
the physical processes by the algorithms of the model, and
(3) parameter estimation during the calibration procedure
(Troutman, 1985). Examples of the three types of model errors
and how those errors limit application of the model follow.



Examples of Errors in Model Input Data

Input data on types and thicknesses of hydrogeologic
units, water levels, recharge and groundwater withdrawal
amounts, and hydraulic properties represent only
approximations of actual values. Parts of the model domain
include areas that are poorly characterized. In areas without
lithologic well logs, variability in hydrogeologic properties or
depths of contacts may be outside the range of values in areas
that have been better characterized, and the errors associated
with this variability would remain unrepresented. Specific
conclusions drawn from regions of the model with sparse
observations should be limited to general flow directions and
relative magnitudes.

The absence of historical withdrawal data from wells
results in the greatest limitation of the groundwater model.
Although the best available land- and water-use data were
used, the method that specified the spatial distribution of
withdrawals both by area and aquifer (that is, assigned model
layer) is uncertain and introduces error in the simulated
withdrawal wells because the actual historical withdrawals
are unknown. The observed water levels used for model
calibration respond to actual groundwater withdrawals, but
because the location and magnitude of withdrawals specified
in the model is at best an approximation of the actual
withdrawals, water levels simulated at observation-well
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locations cannot reproduce measured water levels with high
accuracy. Although the model may not simulate water levels
measured at a particular location with high accuracy, average
simulated changes in water levels, such as those resulting
from increased recharge over many years, are more reliable.
Changes in water levels resulting from an additional simulated
stress also may be simulated more accurately than the altitudes
of the water levels.

Recharge values for 2008—13 used the 2007 recharge
rates, as no data for 2008 and later were available.

Because 2007 precipitation was similar to the mean annual
precipitation (Kahle and others, 2011), extrapolation of

the 2007 simulated recharge was considered a reasonable
representation for subsequent years. However, this estimation
could result in different results if actual values of recharge
were known for that period.

The calibration bounds for hydraulic-property data
generally came from specific-capacity tests, which typically
measure drawdown at one time and at one pumping rate,
and typically are not as accurate as aquifer tests. Thus, broad
ranges of hydraulic-property parameter values are possible.
Additionally, lack of information on streambed hydraulic
conductivity values resulted in these values being poorly
constrained, which limit the accuracy of groundwater/surface-
water exchanges.
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Figure 21. Cumulative simulated changes in groundwater storage in the model domain and areas in the

Quincy Groundwater Management Subarea, Quincy Basin, Washington, 1920-2013.
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Examples of Errors in Representation of the
Physical Processes by the Algorithms of the
Model

All the physical processes within a watershed cannot be
represented completely or “captured” in a numerical model.
Determining if a weakness in a simulation is attributable to
input data error or model shortcomings is almost impossible,
but the simplifying assumptions and generalizations that are
incorporated in a model undoubtedly affect the results of the
simulation.

Model-discretization errors (including effects of
averaging elevation information over the model cell size)
result from inaccuracies in the geometric representation of
hydrogeologic units, in the representation of the bedrock
areas and their contact with unconsolidated units, and in the
location of the Frenchman Hills Fault zone. For this reason,
interpretations of simulation results should be limited to scales
several times greater than the model spatial and temporal
resolutions of 1 km and 1 year.

Examples of Errors in Parameter Estimation
During the Model Calibration Procedure

Errors in parameter estimates occur when improper
values are selected during the calibration process. Various
combinations of parameter values may result in low residual
error yet may improperly represent the actual system. An
acceptable degree of agreement between simulated and
measured values does not guarantee that the estimated model-
parameter values uniquely and reasonably represent the actual
parameter values. The use of automatic parameter estimation
techniques and associated statistics, such as composite scaled
sensitivities and correlation coefficients, removes some of the
effects of non-uniqueness, but does not eliminate the problem
entirely. The comparison of calibrated values to literature
values also can reduce error caused by parameter estimation
if the model simulation results are within previously accepted
ranges. Limitations of the observation weighting scheme
used in this study include non-varying weights for heads that
did not account for measurement errors within each group of
measurements.

Appropriate Use of the Model

If the regional groundwater-flow model is used
appropriately, the effects of the simplifications and other
potential errors can be limited. If the model is used for
simulations beyond which it was designed, however, the
generalizations and assumptions used could significantly affect
the results. Because of the model scale and level of detail, the
model generally is most applicable to analysis of regional-
scale groundwater problems. Local-scale (anything less than
an area 3 x 3 km) heterogeneity in hydrologic properties,
recharge, and discharge is not represented adequately by the
regional-scale, groundwater-flow model constructed for this
study.

Scenarios

The groundwater-flow model was used to simulate
possible effects on water levels caused by potential changes in
recharge, well withdrawals, and streamflow. A simulation with
the calibrated transient model with a final stress period of the
model (representing year 2013) run to steady-state conditions
was done to provide a “base simulation” for scenario
comparison. Four scenarios were formulated and simulated
using the steady-state 2013-simulation conditions to show how
the model could be used to investigate water-resource issues.
Results from the scenario model simulations were compared
to base simulation results and resultant changes in water-level
altitudes were evaluated. The change in storage over time was
not evaluated as the scenarios are run to steady-state. Model
scenarios were developed to evaluate the following conditions:

* Scenario 1. Reduce recharge in irrigated areas by 10
percent from 2013 amounts to assess the effects of
increased irrigation efficiency.

* Scenario 2. Increase current withdrawals from 2013
amounts by 2,000 acre-ft/yr to access future increases
in permitted withdrawals.

* Scenario 3. Increase streamflow in Crab Creek
downstream of Billy Clapp Lake by 100 ft3/s to assess
the effect of routing additional flow down Crab Creek.

* Scenario 4. Increase streamflow in Crab Creek
downstream of Billy Clapp Lake by 500 ft3/s to assess
the effect of routing additional flow down Crab Creek.



Scenario 1—Reduce Recharge

Scenario 1 uses the conditions for the 2013 stress period
run to steady-state with the exception of reducing recharge
by 10 percent in all irrigated areas, which were determined as
being those cells with recharge greater than the background
rate of 2 in/yr. The purpose of this scenario is to simulate the
effects of increasing irrigation efficiency. All other boundary
conditions were left unchanged.

Reducing recharge amounts by 10 percent in irrigated
areas reduces water-level altitudes throughout the model
domain compared to the conditions for the 2013 stress period
run to steady-state (fig. 22). Most of the model domain shows
simulated declines of about 0—15 ft, particularly in areas that
did not have much irrigation. Areas of the model with higher
irrigation amounts have larger declines, with areas east of
Moses Lake having declines of as much as 50 ft and areas
west of Potholes Reservoir also having declines of as much as
50 ft with isolated pockets exceeding 50 ft.

Scenario 2—Increase Withdrawal Amounts

Scenario 2 uses the conditions for the 2013 stress
period run to steady-state, with the exception of increasing
groundwater withdrawals in the Quincy Subarea. The total
withdrawals in the Quincy Subarea were increased by about
2,000 acre-ft/yr to represent the additional permitting capacity
available in the subarea. Because the location of future
withdrawals is unknown, withdrawals for all wells that are
screened in the unconsolidated sediments or the upper two
basalt layers within the subarea were increased in proportion
(about 1.2 percent) to their original withdrawal amount. Wells

that were open to the Grande Ronde Basalt were not increased.

All other boundary conditions were left unchanged.
Simulated increases in groundwater withdrawal rates
result in decreased water-level elevations. Simulated water
levels decline by as much as about 5 ft compared to the
conditions for the 2013 stress period run to steady-state
(fig. 23). Groundwater levels decline by about 0-2 ft in most
of the model domain. The largest declines (from about 2
to more than 5 ft) occur to the west of Potholes Reservoir.
Because the increased groundwater withdrawals are spread
throughout the Quincy Subarea, actual changes in water levels
are different depending on where the additional withdrawals
actually occur.
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Scenario 3—Increase Flow in Crab Creek
Downstream of Billy Clapp Lake by 100 Cubic
Feet Per Second

Reclamation is interested in establishing a supplemental
route to route water into Potholes Reservoir from Billy Clapp
Lake using the natural channel of Crab Creek. To simulate
the effects of adding additional water in this steady-state
simulation, 100 ft3/s was added to the flow in Crab Creek
where it passes Billy Clapp Lake and compared to the
conditions for the 2013 stress period run to steady-state. No
other boundary conditions were changed.

In this scenario, the simulated groundwater levels rise
near Crab Creek between Billy Clapp Lake and Moses Lake as
the stage of the creek rises with the additional flow (fig. 24).
Groundwater levels generally rise by about 5-10 ft alongside
the creek, with a few areas rising by more than 10 ft. Farther
away from the stream, groundwater levels rise by about 2.5-5
ft, with areas farthest from the stream having a minimal rise of
about 0-2.5 ft.

Scenario 4—Increase Flow in Crab Creek
Downstream of Billy Clapp Lake By 500 Cubic
Feet Per Second

Scenario 4 is identical to scenario 3, with the exception
of 500 ft3/s of additional water being added to Crab Creek
downstream of Billy Clapp Lake rather than 100 ft3/s. No
other boundary conditions were changed.

With the addition of 500 ft3/s to Crab Creek, the
simulated groundwater levels rise near Crab Creek between
Billy Clapp Lake and Moses Lake as the stage of the creek
rises with the additional flow (fig. 25). The groundwater levels
rise higher and over a larger area than with the addition of
100 ft3/s. Groundwater levels generally rise by about 20-30 ft
alongside the creek, with a few areas rising by more than 30
ft. Farther away from the stream, the effect of the additional
water in the stream diminishes as groundwater levels rise by
about 2.5-20 ft, with areas farthest from the stream having a
minimal rise of about 0-2.5 ft.
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Figure 23. Simulated water-level changes after increasing groundwater withdrawal amounts by 2,000 acre-feet per year,

Quincy Basin, Washington.
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Figure 24. Simulated water-level changes after increasing flow in Crab Creek downstream of Billy Clapp Lake by 100 cubic

feet per second, Quincy Basin, Washington.
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Summary

The Miocene Columbia River Basalt Group and younger
sedimentary deposits of lacustrine, fluvial, eolian, and
cataclysmic-flood origin compose the aquifer system of the
Quincy Basin in eastern Washington. Irrigation return flow and
canal leakage from the Columbia Basin Project have recharged
this aquifer system under parts of the Quincy Basin since
1952. Groundwater levels in the sedimentary overburden have
risen substantially in some areas of the Quincy Basin. State
and local water resource managers are considering extracting
the additional stored groundwater to supply increasing
demand. The objectives of this study were to (1) define the
area hydrogeology, (2) determine rates and directions of
groundwater flow through the aquifer system, (3) quantify the
effect of anthropogenic recharge and groundwater withdrawals
on groundwater storage, and (4) simulate the effects of certain
groundwater-management scenarios.

To address the objectives of this study, the U.S.
Geological Survey developed a transient groundwater model
of the Quincy Basin that quantifies changes in groundwater
flow and storage. The model uses a 1-kilometer finite
difference grid with MODFLOW-NWT (the Newton Solver
package in the U.S. Geological Survey modular three-
dimensional finite-difference groundwater-flow model) and
is constrained by 698 well logs in the study area. Five model
layers represent two sedimentary hydrogeologic units and the
underlying basalt formations. Head-dependent flux boundaries
represent the Columbia River and other streams, lakes
and reservoirs, underflow to and (or) from adjacent areas,
and discharge to agricultural drains and springs. Specified
flux boundaries represent recharge from precipitation and
anthropogenic sources, including irrigation flows and
leakage from water-distribution canals and discharge through
groundwater withdrawal wells. The model was calibrated with
the parameter-estimation code PEST to a total of 4,064 water
levels measured in 710 wells.

A simulated increase of about 11.5 million acre-
feet in groundwater storage in the Quincy Subarea since
predevelopment results from Columbia Basin Irrigation
Project operations increasing the recharge into the aquifer
system. Four hypothetical groundwater-management scenarios
were simulated to estimate potential changes in groundwater
levels due to changed conditions. Scenario 1 simulates a
reduction in recharge of 10 percent in all irrigated areas to
simulate increase irrigation efficiency. Most of the model
domain would have groundwater-level declines of about 0—15
feet, with areas east of Moses Lake and west of Potholes
Reservoir having declines of as much as 50 feet. Scenario 2
simulates an increase in groundwater withdrawal amounts by
2,000 acre-feet per year in the Quincy Subarea. Increasing
groundwater withdrawals decreases groundwater levels by as
much as about 5 feet. Groundwater levels would decline in
most of the model domain by only about 0-2 feet. The largest

declines occur west of Potholes Reservoir. Scenarios 3 and
4 simulate an increase in flow in Crab Creek downstream
of Billy Clapp Lake of 100 and 500 cubic feet per second
(ft3/s), respectively. Groundwater levels increase over 2013
steady-state levels with the increased streamflow. Areas
closer to the stream rise more than those areas farther away,
with groundwater levels rising by about 5-10 feet along the
stream with the addition of 100 ft3/s of streamflow and by
about 20-30 feet along the stream with the addition of 500
ft3/s of streamflow. Groundwater levels increase more and
over a larger area with the addition of 500 ft3/s of streamflow
compared to the addition of 100 ft3/s of streamflow.
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